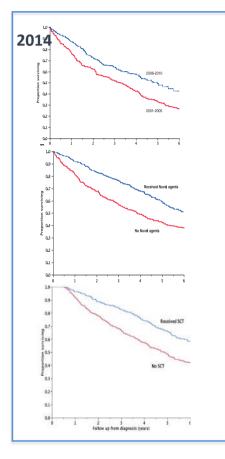
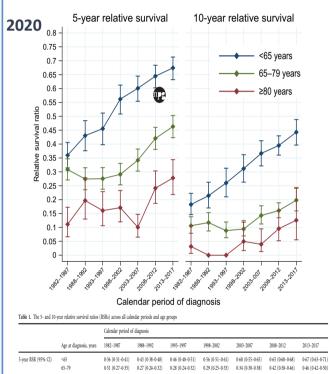


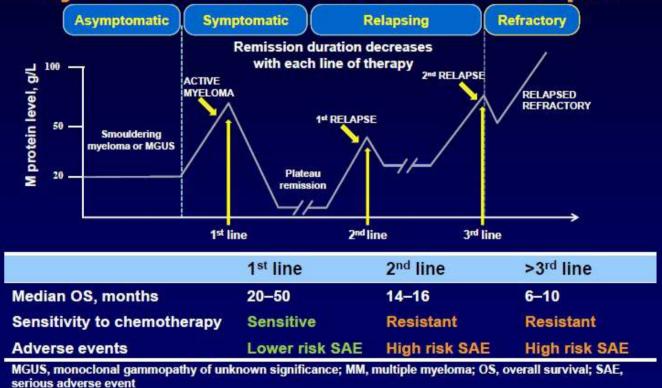
1-2 Febbraio 2022 Bologna Royal Hotel Carlton



Disclosures


No conflict of interest

1-2 Febbraio 2022 Bologna Royal Hotel Carlton

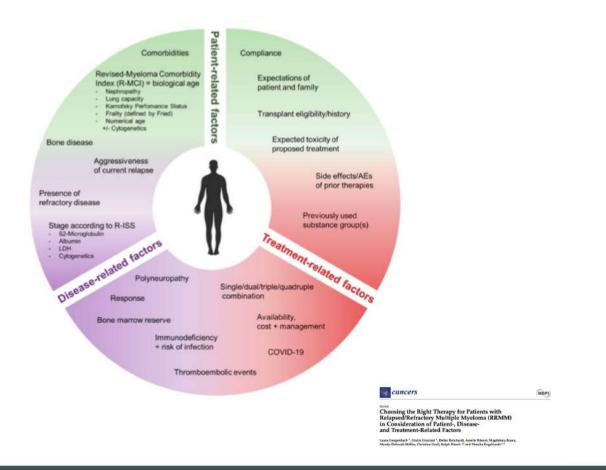

5-year RSR (95% CI)	<65	0.36 (0.31-0.41)	0-43 (0-380-48)	0.46 (0.40-0.51)	0.56 (0.51-0.61)	0.60 (0.55-0.65)	0.65 (0.60-0.68)	0.67 (0.63-0.7)
	6579	0-31 (0-27-0-35)	0.27 (0.24-0.32)	0.28 (0.24-0.32)	0.29 (0.25-0.33)	0-34 (0-30-0-38)	0-42 (0-380-46)	0-46 (0-420-50
	≥80	0-11 (0-07-0-17)	0-20 (0-13-0-28)	0.16 (0.11-0.23)	0.17 (0.12-0.23)	0.10 (0.07-0.15)	0.24 (0.19-0.30)	0-28 (0-22-0-3
10-year RSR (95% CI)	<65	0-18 (0-15-0-22)	0-21 (0-17-0-26)	0.26 (0.21-0.31)	0.31 (0.26-0.36)	0.37 (0.32-0.41)	0-40 (0-360-43)	0-44 (0-40-0-49
	6579	0-11 (0-08-0-14)	0-12 (0-09-1-15)	0-09 (0-06-0-12)	0.09 (0.07-0.13)	0.14 (0.11-0.18)	0-16 (0-14-0-19)	0.20 (0.16-0.24
	≥80	0.03 (0.01-0.11)	0-00 (0-000-00)	0.00 (0.00-0.00)	0.05 (0.02-0.12)	0.04 (0.01-1.00)	0.10 (0.05-0.16)	0.13 (0.06-0.24

Langseth,BJH 2020

1-2 Febbraio 2022 Bologna Royal Hotel Carlton

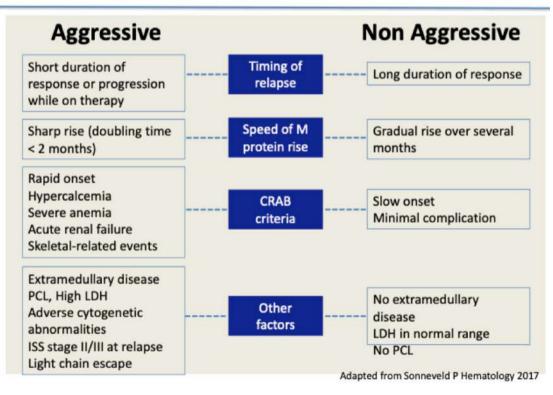
16.6:0.

Course of Disease: MM is Characterised by a Pattern of Remission and Relapse



Adapted from: Durie BGM. 2008/2009 edition. North Hollywood, CA: International Myeloma Foundation; 2008.

1-2 Febbraio 2022 Bologna Royal Hotel Carlton

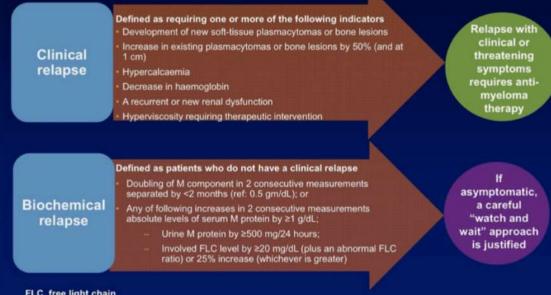


Relevant parameters for treatment selection in RRMM patients

1-2 Febbraio 2022 Bologna Royal Hotel Carlton

Not All Relapses in Multiple Myeloma are the Same¹⁻⁷

CRAB, calcium elevation, renal insufficiency, anemia, bone lesions.8 LDH, lactate dehydrogenase.


1. Mikhael JR. Hematology Am Soc Hematol Educ Program. 2014;2014:262-267. 2. Laubach J et al. Leukemia. 2016;30:1005-1017. 3. Lopez A et al. Leuk Res Rep. 2015;4:64-69. 4. Karlin L et al. Leuk Lymphoma. 2011;52:238-246. 5. Bladé J et al. Ann Oncol. 2010; 21(suppl 7):vii313-vii319. 6. Nooka AK et al. Blood. 2015;125: 3085-3099. 7. Mohty B et al. Leukemia. 2012;26:73-85. 8. Rajkumar SV et al. Lancet Oncol. 2014;15:e538-e548.

1-2 Febbraio 2022 Bologna Royal Hotel Carlton

When to start treatment

IMWG Definition for Starting Treatment for Relapsed/Refractory Multiple Myeloma (RRMM)

FLC, free light chain

Rajkumar SV, et al. Blood. 2011;117(18):4691-4695. Ludwig H, et al. Oncologist. 2012;17(5):592-606.

1-2 Febbraio 2022 Bologna Royal Hotel Carlton

Advantages for treatment at CRAB compared with biochemical relapse

- ✓ Patients could maintain active life between treatments
- ✓ Treatment toxicity could be spared
- ✓ The Health System could spare money
- Longer interruptions between treatments could prevent the development of clonal resistance
- Immune system could control indolent biochemical relapses prolonging time to next treatment

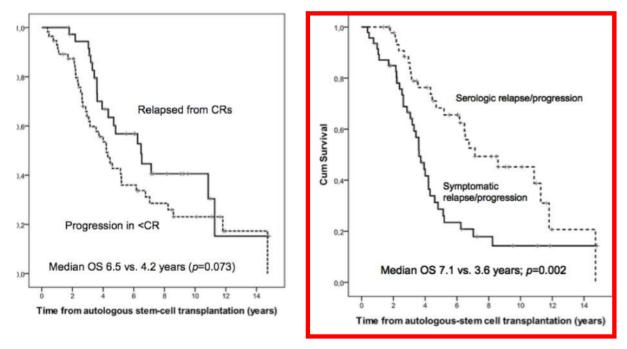
1-2 Febbraio 2022 Bologna Royal Hotel Carlton

Limits for treatment at CRAB compared with biochemical relapse

- ✓ Wait and watch; strategy can produce anxiety in patients and doctors
- ✓ A larger MM burden can be more difficult to be treated
- ✓ No prevention of organ damage
- ✓ More effective and safe treatment combinations available

1-2 Febbraio 2022 Bologna Royal Hotel Carlton

Relapse/progression pattern after front-line ASCT*


- Asymptomatic (M-protein increase) → 50%
- Symptomatic → 50%
- Similar to the initial clinical presentation (renal failure, [↑]Ca, urine-M protein excretion, EMPs)

*Fernández de Larrea C et al, BMT 2014; 49:223-227.

1-2 Febbraio 2022 Bologna Royal Hotel Carlton

Relapse/progression pattern after front-line ASCT*

*Fernández de Larrea C et al, BMT 2014; 49:223-227.

1-2 Febbraio 2022 Bologna Royal Hotel Carlton

Treatment of relapse/progression after front-line ASCT*

26% of asymptomatic patients did not require therapy within 2 years

- ISS I or II at diagnosis, M-protein type was IgG (58%), only one extramedullary involvement
- Infrequent clinical features of aggressiveness (renal failure, hypercalcemia or anemia)
- All patients had received combination chemotherapy, with no novel agents pre-autologous SCT, except one
- □ Median OS after relapse/progression was 8.5 years, only four deaths
- Three of these 12 patients had not received any rescue therapy at
 - 2, 3 and 4 years from relapse

1-2 Febbraio 2022 Bologna Royal Hotel Carlton

Treatment of relapse/progression after front-line ASCT*

- Median time to rescue therapy: 2 months
 - \Box Symptomatic patients \rightarrow immediate therapy
 - \Box Asymptomatic patients \rightarrow 5.6 months

*Fernández de Larrea C et al, BMT 2014; 49:223-227.

1-2 Febbraio 2022 Bologna Royal Hotel Carlton

653. MYELOMA: THERAPY, EXCLUDING TRANSPLANTATION: POSTER II | NOVEMBER 29, 2018

Subgroup Analysis of Patients with Biochemical or Symptomatic Relapse at the Time of Enrollment in the Endeavor Study

Philippe Moreau, ¹ David S Siegel, MD PhD, Hartmut Goldschmidt, MD, Ruben Niesvizky, MD, Sara Bringhen, MD, Robert Z Orlowski, MD PhD, ⁵ Julie Blaedei,⁷ Zhao Yang,⁷ Meletios A Dimopoulos, MD

Efficacy outcomes and adverse events by type of relapsed disease at study randomization.

		emical toms at baseline)	Symptomatic (CRAB symptoms at baseline)	
Efficacy outcomes	Kd56 (n=60) ^a	Vd (n=57)	Kd56 (n=404) ^b	Vd (n=408)
Median PFS, months (95% CI)	NE (18.7-NE)	13.7 (12.1-NE)	17.7 (14.8-NE)	8.8 (7.4-10.1)
HR for Kd56 vs Vd (95% CI)	0.462 (0.2	232-0.922)	0.539 (0.439-0.662)	
Median OS, months (95% CI)	NE (NE-NE)	NE (39.8–NE)	44.0 (38.0-51.3)	36.8 (29.4-41.8)
HR for Kd56 vs Vd (95% CI)	0.768 (0.3	350-1.683)	0.801 (0.6	53-0.982)
Safety outcomes	Kd56 (n=60)	Vd (n=56)	Kd56 (n=403)	Vd (n=400)
TEAEs, n (%)	58 (96.7)	56 (100.0)	399 (99.0)	395 (98.8)
Grade ≥3 TEAEs, n (%)	47 (78.3)	33 (58.9)	330 (81.9)	291 (72.8)
TEAEs leading to treatment discontinuation, n (%)	17 (28.3)	11 (19.6)	116 (28.8)	107 (26.8)
TEAEs leading to death, n (%)	0	1 (1.8)	32 (7.9)	20 (5.0)

^aFor PFS, n=61.

^bFor PFS, n=403.

CI, confidence interval; CRAB, hypercalcemia, renal impairment, anemia, or bone lesions; HR, hazard ratio; Kd56, carfilzomib (56 mg/m²) and dexamethasone; OS, overall survival; NE, not estimable; PFS, progression-free survival; TEAE, treatment-emergent adverse event; Vd, bortezomib and dexamethasone.

1-2 Febbraio 2022 Bologna Royal Hotel Carlton

653. MYELOMA: THERAPY, EXCLUDING TRANSPLANTATION: POSTER II | NOVEMBER 29, 2018

Subgroup Analysis of Patients with Biochemical or Symptomatic Relapse at the Time of Enrollment in the Endeavor Study

Philippe Moreau, ¹¹ David S Siegel, MD PhD,² Hartmut Goldschmidt, MD,³ Ruben Niesvizky, MD,⁴ Sara Bringhen, MD,³ Robert Z Orlowski, MD PhD,¹⁰ Julie Blaedel,² Zhao Yang,² Meletios A Dimopoulos, MD

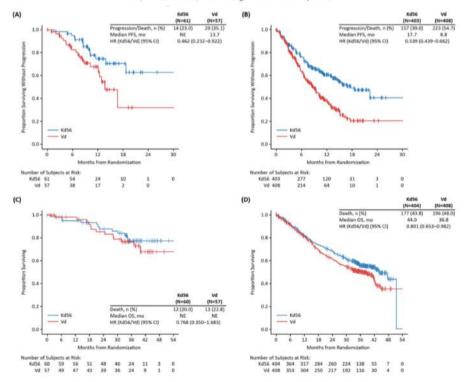


Figure. Kaplan–Meier PFS and OS curves for Kd56 and Vd by type of relapse at randomization: (A) PFS in patients with biochemical relapse, (B) PFS in patients with symptomatic relapse, (C) OS in patients with biochemical relapse, and (D) OS in patients with symptomatic relapse

1-2 Febbraio 2022 Bologna Royal Hotel Carlton

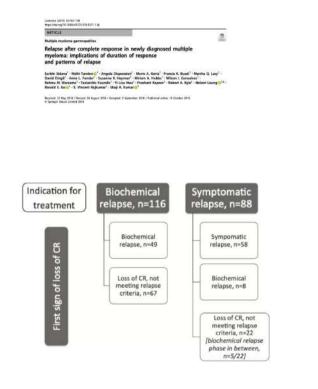
Ladens 0018 3376-28 Inscriber of 18 3376-29 Mathematical and the second second

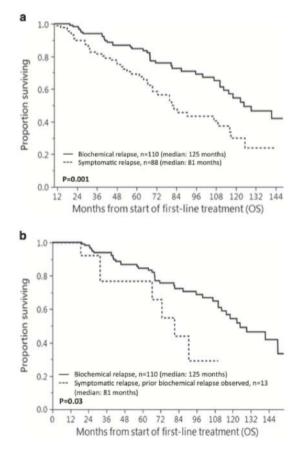
Surbhi Sidama¹ • Nebhi Tandon¹ • Angela Dispenzien¹ • Morie A. Gertz¹ • Francis K. Ruadi ¹ • Martha Q. Lavj¹ • David Diegl² • Arela L. Fonderi ¹ · Szazare R. Hymma¹ • Millem A. Hobbi¹ • Willon I. Gonzalvas¹ • Rahma M. Wasaren² – Tastarichis Kurunii ¹ • Yllia Heali - Pashatet Kapoo¹ • Robert A. Kyle¹ • Heison Laung¹ ¹² Ronald S. Go¹ • S. Vincent Rajkumu¹ - Shaji K. Kumar¹

۲

Received: 23 May 2019 / Revised: 28 August 2018 / Accepted: 3 September 2018 / Published online: 15 October 2018 ID Springer Matare Limited 2018

Variable	N = 351, Median (IQR) or n (%)	
Age, years	61 (54-66)	
Males	198 (56)	
High-risk cytogenetics: del17p, t(4;14),t (14;16) and t(14;20)	58/283 (21)	
ISS (Data available in N = 295)	115/96/84 (39/33/28)	
R-ISS (Data available in N = 230)	61/141/28 (27/61/12)	
BMPCs	50% (30-70)	
ASCT with initial therapy	271 (77)	
Maintenance therapy	135 (39)	
Time to CR	8 months (5-10)	
Median duration of CR	24 months (13-42)	
Duration of CR		
Less than 6 months	33 (9)	
6-12 months	41 (12)	
12-18 months	50 (14)	
18-24 months	48 (14)	
24 months or more	179 (51)	
Loss of CR	239/351 (68)	
Type of CR loss		
Symptomatic relapse/progression	59 (25)	
Biochemical relapse/progression	58 (24)	
Positive immunofixation with or without rise in monoclonal protein, not meeting criteria for progression	88 (37)	
Abnormal FLC ratio in patients with light chain evaluable disease	34 (14)	


ISS International Staging System, R-ISS Revised International Staging System, BMPCs bone marrow plasma cells, ASCT autologous stem cell transplantation, CR complete response


Loss of complete response

Loss of CR was defined as "(1) Symptomatic relapse/progression" (for example, progression with lytic lesions or soft tissue plasmacytoma or other symptoms of end-organ damage from myeloma); "(2) Biochemical relapse/progression" as defined by the IMWG criteria with 25% or more increase in monoclonal protein, with at least 0.5 g/dL absolute increase. For light chain evaluable patients, absolute increase in difference in involved and uninvolved FLC (dFLC) should be at least 10 mg/dL; "(3) Biochemical loss of CR with re-emergence of monoclonal protein:" two consecutive positive immunofixation values in serum/urine or rise in monoclonal protein not meeting IMWG symptomatic or biochemical progression criteria; "(4) Biochemical loss of CR with abnormal FLC ratio only [light chain myeloma only]:" Two consecutive abnormal FLC ratios in patients with light chain evaluable multiple myeloma who do not otherwise meet criteria for loss of CR with reemergence of monoclonal protein as described in (3).

1-2 Febbraio 2022 Bologna Royal Hotel Carlton

Overall survival from start of first-line therapy in patients with relapse from complete response starting treatment for (a) biochemical vs. symptomatic relapse and (b) biochemical relapse vs. those who were observed with biochemical relapse and started treatment for symptomatic disease

1-2 Febbraio 2022 Bologna Royal Hotel Carlton

Annals of Hernatology (2018) 97:1671-1682 https://doi.org/10.1007/s00277-018-1361-2

ORIGINAL ARTICLE

Real-world data on Len/Dex combination at second-line therapy of multiple myeloma: treatment at biochemical relapse is a significant prognostic factor for progression-free survival

Eirhi Katodritou¹ - Marie-Christine Kyrtsonis¹ - Sosana Delimpasi¹ - Despoina Kyriakou⁴ - Arghis Symeonidis⁴ -Ermanaoul Spanoudakis⁶ - Georgios Vasilopoulos⁷ - Achilisa Anagenostopoulos⁴ - Anan Kioum¹¹ - Panagoist Zikos¹⁹² -Anthi Aktypl¹¹ - Europelos Brizacellis¹¹ - Aldatedni Magalakis¹¹ - Panayiotta Repousis¹² - Ioaranis Adamopoulos¹¹ - Minita Kospoulos¹¹ - Maria Kospoulos¹¹ - Vassiliki Papa¹¹ - Eleni Papadaki¹⁷ - Despoina Foticu¹⁸ -Efrychia Nikolaos¹¹ - Euromana Gamopoulou¹³ - Vassiliki Papa¹¹ - Eleni Papadaki¹⁷ - Despoina Foticu¹⁸ -Kyriaki Kokoviso¹¹ - Despoina Foticu¹⁸ - Steffhera Hatzimchael¹¹ - Nikolaos Gannakoulas² - Vassiliki Doulou⁴ -Kyriaki Kokoviso¹¹ - Despoina Tombeteou¹⁰ - Elenegoles Terpos¹⁷

Peosived: 25 January 2018 / Accepted: 2 May 2018 / Published online: 13 May 2018 C The Author(s) 2018, corrected publication July/2018

	Response rates of second line treatment					
	Total sample ^a $(N = 207)$	Relapse at the of second-line	p value			
		Biochemical (N = 139)	Clinical (N=67)			
Response	N (%)	N (%)	N (%)	0.021		
sCR ^b	10 (4.8)	6 (4.3)	4 (6.0)			
CR ^c	27 (13.0)	15 (10.8)	12 (17.9)			
VGPR ^d	49 (23.7)	36 (25.9)	13 (19.4)			
PR ^e	66 (31.9)	51 (36.7)	15 (22.4)			
MR ^f /SD ^g	16 (7.7)	12 (8.6)	4 (6.0)			
Other	39 (18.9)	19 (13.7)	19 (28.4)			
ORR^h	152 (73.4)	108 (77.7)	44 (65.7)	0.066		

^a Type of relapse unknown for one patient

^b Stringent complete response

^c Complete response

^d Very good partial response

e Partial response

^fMinor response

^g Stable disease

^hOverall response rate

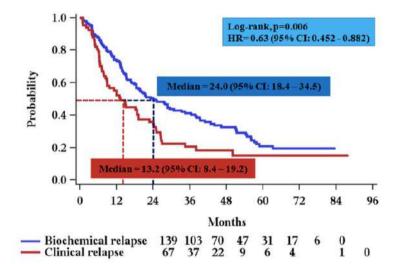


Fig. 2 PFS curves for patients who started second line treatment on clinical relapse (median 13.2 months), and for patients that started second line treatment on biochemical relapse (median 24 months)

1-2 Febbraio 2022 Bologna Royal Hotel Carlton

Annals of Hernatslogy (2018) 97:16 https://doi.org/10.1007/s06277-018			
ORIGINAL ARTICLE			

Real-world data on Len/Dex combination at second-line therapy of multiple myeloma: treatment at biochemical relapse is a significant prognostic factor for progression-free survival

Etrini Katodritou¹ - Marie-Christine Kyrtsonis¹ - Sosana Delimpasi¹ - Despoirus Kyrtakou⁴ - Arapiris Symeonidis¹ -Ermanaouil Spaneudakis² - Georgios Vasilopoulus² - Achilles Anagonstopoulos⁴ - Anan Kioum¹ - Panagote Taisoulos ¹ - Anthi Akrya¹¹ - Torangios Entracoult¹¹ - Alaktenin Mesalikai¹¹ - Panayotis Repousi¹² - Jonnin Adampoulos¹⁴ -Dimitrios Gagos¹³ - Maria Kotopoulou¹³ - Vasiliki Papas¹⁸ - Eten Papadaki¹⁷ - Despoira Fotiou¹⁴ -Mirythai Nikolan¹² - Alaktania Maropoulou¹ - Panagelas Terpos¹⁹ - Nikolaos Gannakoulas² - Vassiliki Douka¹ -Kyrtaki Kokoviadou¹⁹ - Despoira Timotheatou¹⁰ - Evangelos Terpos¹⁹

Received: 25 January 2018 / Accepted: 2 May 2018 / Published online: 13 May 2018 © The Author(s) 2018, corrected publication July/2018

ognostic factors Haz	ard ratio (HR) N HR 95% CI	P-value
Type of Relapse		
Biochemical vs Clinical	139 vs 67 0.63 (0.452 - 0.882)	0.007
Age (years)	T	
≥61 vs <61	154 vs 53 1.11 (0.768 · 1.607)	0.577
ISS		< 0.001
II vs I	74 vs 54 1.08 (0.698 · 1.668)	0.733
III vs I	77 vs 54 2.00 (1.314 - 3.029)	0.001
eGFR		0.866
≥90 vs <60	66 vs 51 0.89 (0.584 - 1.367)	0.605
60 - 90 vs <60 .	83 vs 51 1.02 (0.683 · 1.512)	0.937
Missing vs <60	7 vs 51 1.22 (0.479 · 3.091)	0.68
Beta 2 microglobulin		0.032
≥5.5 vs <3.5	36 vs 84 1.79 (1.166 - 2.758)	0.008
3.5 - 5.5 vs <3.5	44 vs 84 1.06 (0.698 · 1.616)	0.775
Missing vs <3.5	43 vs 84 0.93 (0.599 · 1.451)	0.755
Itivariate analysis	1	
Type of Relapse	1	
Biochemical vs Clinical	137 vs 67 0.67 (0.473 - 0.939)	0.02
Age (years)		2.33
≥61 vs <61 -	152 vs 52 0.99 (0.635 - 1.548)	0.969
155 -		0.001
II vs I	74 vs 54 1.07 (0.675 - 1.703)	0.769
III vs I	76 vs 54 1.96 (1.256 · 3.052)	0.003
eGFR -		0.73
≥90 vs <60	65 vs 51 1.22 (0.728 · 2.036)	0.452
60 - 90 vs <60	82 vs 51 1.27 (0.838 - 1.932)	0.259
Missing vs <60 -	6 vs 51 1.17 (0.406 - 3.349)	0.775
Beta 2 microglobulin -		0.051
≥5.5 vs <3.5	35 vs 83 1.64 (1.008 - 2.665)	0.046
3.5 - 5.5 vs <3.5	44 vs 83 1.01 (0.639 - 1.588)	0.974
Missing vs <3.5	42 vs 83 0.78 (0.493 - 1.242)	0.299

Annals of Hernatslogy (2018) 97:1671-1682 https://doi.org/10.1007/s00277-018-1361-2

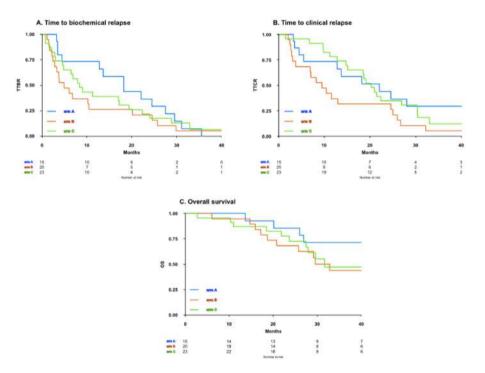
ORIGINAL ARTICLE

1-2 Febbraio 2022 Bologna Royal Hotel Carlton

Management pattern followed in patients with **Biochemical or Clinical relapse** (D) . Real-world data on Len/Dex combination at second-line therapy of multiple myeloma: treatment at biochemical relapse is a significant prognostic factor for progression-free survival Eirini Katodritou¹ - Marie-Christine Kyrtsonis¹ - Sosana Delimpasi¹ - Despoina Kyriakuu⁶ - Arapita Symeenidis¹ -Ermanaouil Spanoudakia⁶ - Georgios Vasilopoulos¹ - Achilles Anagonotopoulos⁴ - Anna Kioum¹ - Panagois Ziazolos ¹⁰ - Anthi Aktyo¹¹ - Tomoglios Eraizoullis¹ - Alaktenia Megalakia¹¹ - Panayotis Repousu¹² - Lonanis Adamopoulos¹⁴ -Dimitrias Gogos¹³ - Maria Kotopoulou¹³ - Vasiliki Papa¹⁴ - Einel Papadaki¹⁷ - Despoine Fotiou¹⁸ -Hyrtycha Nikolaov¹⁴ - Mathania Mariani Hartimichal¹² - Nikolaos Giannakoulas⁷ - Vassiliki Douka⁴ -Kyriaki Kokoviadou¹⁹ - Despoina Timotheatou¹⁰ - Evangelos Terpos¹⁰ **Biochemical relapse Clinical relapse** Received: 25 January 2018 / Accepted: 2 May 2018 / Published online: 13 May 2018 (1) The Author(s) 2018, corrected publication July/2018 N=33 96 N=68 96 18.2 14.7 Addition of drug 6 Addition of drug 10 3.0 Dose intensification 1 Addition of drug, Continue treatment and 1.5 1 3.0 Dose intensification, Addition of drug 1 monthly monitoring Switch treatment 25 75.8 Continue treatment and monthly 20.6 14 monitoring On treatment during the relapse 4 5.9 Dose intensification 2 2.9 Dose intensification, Addition of drug Dose intensification, Continue treatment 1.5 1 N=7 46 and monthly monitoring 57.1 Switch treatment 4 35 51.5 Switch regimen 42.9 3 Start treatment with Len/Dex Switch regimen, Continue treatment and 1.5 1 monthly monitoring Not on treatment during the relapse On treatment during the relapse N=16 96 "Watch & Wait", monthly monitoring (no 25.0 treatment) Start treatment with Len/Dex 6 37.5 Start treatment with Len/Dex. Switch 6.3 regimen 31.3 Switch regimen 5

Not on treatment during the relapse

1-2 Febbraio 2022 Bologna Royal Hotel Ca<u>rlton</u>



Hera et al Mond Calcun (parent 2000/1516 March Round (11. 2006/14 100/223 1020)

Bortezomib-dexamethasone as maintenance therapy or early retreatment at blochemical relapse versus observation in relapsed/refractory multiple myeloma patients: a randomized phase II study where here there is a nanotice water there is a study on here there is a nanotice of the study here there is a study of the stud

Blood Canosr Jauma

Open Access

Survival outcomes: Time to biochemical relapse (**a**), time to clinical relapse (**b**) and overall survival (**c**) in the examined population. **TTBR** time to biochemical relapse, **TTCR** time to clinical relapse, **OS** overall survival, **ARM A** bortezomib and dexamethasone until progression, **ARM B** observation until clinical relapse, **ARM C** early retreatment at biochemical relapse with bortezomib and dexamethasone.

1-2 Febbraio 2022 Bologna Royal Hotel Carlton

EHA-3106

BENEFICIAL EFFECT ON OVERALL SURVIVAL OF EARLY SALVAGE TREATMENT WITH SECOND-GENERATION NOVEL AGENTS AT BIOCHEMICAL RELAPSE: A REAL-WORLD SINGLE CENTER EXPERIENCE

U. Markovie¹, V. Leotta¹, A.Romano¹, V. Del Fabro¹, C. Bellofiore¹, O. Bianco¹, A. Curto Pelle¹, A.Orofino, F. Di Raimondo¹, C.Contiello¹ 1 A.O.U. Policlinico-Vittorio Emanuele of Catania

INTRODUCTION

Despite therapeutic advances, multiple myeloma (MM) remains largely incurable and patients invariable develop relapsed or refractory (R/R) disease. Relapse can be characterized according to disease aggressiveness and the presence of clinical symptoms. Aggressive relapse can occur at biochemical level, due to rapid and relevant increase of monoclonal component or LDH, or at clinical level, defined by the presence of extramedullary disease, acute renal injury or progression to secondary plasma cell leukemia.

OBJECTIVE

To identify the clinical outcome upon treatment with second generation novel agents (pomalidomide, carfilzomib) and monoclonal antibodies (elotuzumab, daratumumab), we collected evidence of the best timing in providing early salvage treatment to RRMM.

METHODS

According to regulatory Italian laws, patients (N=128) received one of the following regimens:

Among second generation novel agents-treated patients (N=128), 100 pts were exposed to POMA alone (N=77), DARA alone (N=4), DVD (N=6), DRD (N=1), EloRd (N=8), KRD (N=24); 20 pts were exposed to two second generation of novel agents (POMA and KRd N=4, poma and DARA N=4, poma and EloRd N=2, poma and DVD N=3, KRd and DARA N=1, KRd and DVD N=5, EloRd and DVD N=1), 7 patients to three combination (POMA and KRd and DARA N=4, poma and KRd and DVD N=2, KRd and DARA and DVD N=1), 1 patient to POMA, DARA, EloRd and KRd.

RESULTS

From July 2014 to January 2019 we evaluated 166 R/R MM treatments of 128 patients. Table 1 shows patients characteristics.

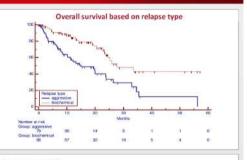

PATIENTS	N° 128	
MALE	74	58%
FEMALE	54	42%
MEDIAN AGE	62 YEARS (RAN	IGE 45- 78)
RELAPSE	76	57%
RELAPSE/REFRACTORY	52	41%
PATIENTS TREATED AT BIOCHEMICAL RELAPSE	87	68%
PATIENTS TREATED AT CLINICAL RELAPSE	41	32%
MEDIAN NUMBER OF	PREVIOUS LIN	ES 3 (1 -13)
PREVIOUS ASCT	64	50%

Table 1. Clinical characteristics

FISH was repeated before starting the second-generation drugs, and it was available in 53 cases: 11 carried on high-risk (del 17p, t4;14 or t14;16) and 42 standard-risk cytogenetics, without any additional marker compared to the matched sample at diagnosis.

For the whole cohort, longer overall survival (OS) was associated to treatment at biochemical relapse (27.8 vs 15.2 months, p=0.0005), to relapsed vs relapsed and refractory patients (34.1 vs 19.3 months, p=0.0004), to patients who received less than 3 lines of therapy (33.6 vs 19.1 months, p=0.002), carrying standard vs high-risk cytogenetics (20.4 vs 11.2 months, p-value not significant for low numbers in two groups. Figure 2) without any significant difference due to previous ASCT or the type of second-generation treatment.

In multivariable analysis only type of relapse (biochemical versus clinical) and refractory status were independent predictors of overall survival (p<0.0001).

CONCLUSION

In our community setting data, heavily pretreated patients achieved improvement of outcome obtaining a median OS >12 months, using second generation novel agents. Earlier treatment at biochemical asymptomatic relapse is associated with longer OS, suggesting that the most efficacious combinations should be anticipated as soon as possible to prolong OS

ACKNOWLEDGEMENTS

Authors wants to acknowledge Giuseppe Gennaro for his help in editing poster.

REFERENCES

<u>- Chakraborty R</u> Progression with clinical features is associated with worse subsequent survival in multiple myeloma. <u>Am J Hematol</u>, 2019 Apr;94(4):439-445. doi: 10.1002/gih25415. - Offidani M, Expert Panel Consensus Statement for Proper Evaluation of First Relapse in Multiple Myeloma Curr Hematol Mailg Rep. 2019 May 10. doi: 10.1007/s189-019-00597-x.

CONTACT INFORMATION

Authors contact detail: ambulatoriomielomi@gmail.com

1-2 Febbraio 2022 Bologna Roval Hotel Carlton

When to start treatment in patients with relapsed/progressed multiple myeloma?

Asymptomatic (M-protein) Relapse vs. Clinical Relapse

<u>Current practice/recommendation (2011)</u> \rightarrow <u>Delay treatment until:</u>

✓ Clinical relapse

- ✓ Significant paraprotein relapse*
- Any of the following criteria in 2 consecutive measurements separated by ≤ 2 months:
- Doubling of the M-component
 - ↑ serum M protein by \ge 10 g/L
 - ↑ urine M protein by \geq 500 mg/24h
 - ↑ involved FLC level by \ge 200 mg/L (plus abnormal ratio)

*Rajkumar et al, Blood 2011; 117: 4691-5.

1-2 Febbraio 2022 Bologna Royal Hotel Carlton

Indications for treatment at relapse

Indications for treatment at relapse

Clinical relapse

- · Development of new soft-tissue plasmacytomas or bone lesions
- Definite increase (≥50%) in size of existing plasmacytomas or bone lesions
- Hypercalcemia (≥11.5 mg/dL; 2.875 mmol/L)
- Decrease in hemoglobin of ≥2 g/dL (1.25 mmol/L), or to < 10g/dL because of myeloma
- Rise in serum creatinine by >2 mg/dL or more (>177 mmol/L), due to myeloma
- · Hyperviscosity requiring therapeutic intervention

Significant biochemical relapse in patients without clinical relapse

- Doubling of the M-component in two consecutive measurements separated by 2 months with the reference value of 5 g/L, or
- In two consecutive measurements any of the following increases: o the absolute levels of serum M protein by ≥10 g/L, or
- o an increase of urine M protein by ≥500 mg per 24 hours, or
- o an increase of involved FLC level by ≥20 mg/dL (plus an abnormal FLC ratio) or 25% increase (whichever is greater)

1-2 Febbraio 2022 Bologna Royal Hotel Carlton

When do we start treatment ?

- ✓ Patients in clinical relapse or in rapid and significant biochemical relapse
- ✓ In first relapse there is still a possibility of achieving a good and lasting response, especially in standard risk patients.
- ✓ In these patients, an increasing M-protein should be closely followed and, in case of (rapid) increase, immediate treatment should be initiated
- ✓ In high-risk patients treatment should always be started
- ✓ There is a small category of patients with slow indolent biochemical relapse who may experience a period of asymptomatic disease with observation only

1-2 Febbraio 2022 Bologna Royal Hotel Carlton

Indicators for Treatment in Relapsed Myeloma

Consider early treatment if:

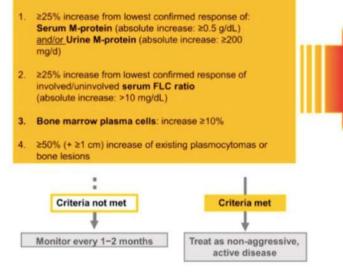
✓ Previous aggressive presentation/ clinical behaviour

✓ Clearly increasing M-protein, particularly light chains in urine

✓ Decreasing Hb level

1-2 Febbraio 2022 Bologna Royal Hotel Carlton

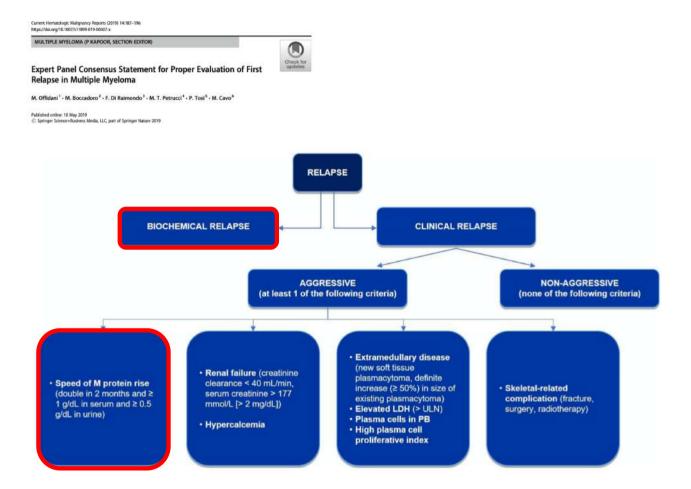
MDPI



a cancers

Choosing the Right Therapy for Patients with Relapsed/Refractory Multiple Myeloma (RRMM) in Consideration of Patient-, Diseaseand Treatment-Related Factors

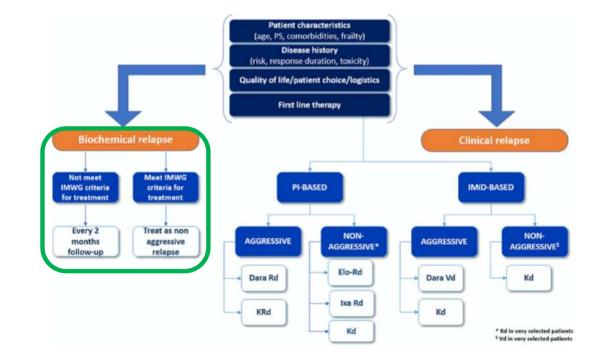
Laura Gengenbach[†], Giulia Graziani[†], Heike Reinhardt, Amelie Rösner, Magdalena Braun, Mandy-Deborah Möller, Christine Greil, Ralph Wäsch[©] and Monika Engelhardt^{*,†}


Biochemical relapse:

1-2 Febbraio 2022 Bologna Royal Hotel Carlton

1-2 Febbraio 2022 Bologna Royal Hotel Carlton

Current Hematologic Malignancy Reports (2019) 14:187-196 https://doi.org/10.1007/s11899-019-00507-x


MULTIPLE MYELOMA (P KAPOOR, SECTION EDITOR)

Expert Panel Consensus Statement for Proper Evaluation of First Relapse in Multiple Myeloma

M. Offidani³ · M. Boccadoro² · F. Di Raimondo³ · M. T. Petrucci⁴ · P. Tosi⁵ · M. Cavo⁶

Published online: 10 May 2019 © Springer Science+Business Media, LLC, part of Springer Nature 2019

1-2 Febbraio 2022 Bologna Royal Hotel Carlton

2001 L Street WW, Soits 900, Mashington, 32 2036 Phone: 202-776-0344 | Fam 202-776-0345 bloodadvancesfilematology.com

Clinical implications of loss of bone marrow minimal residual disease negativity in multiple myeloma

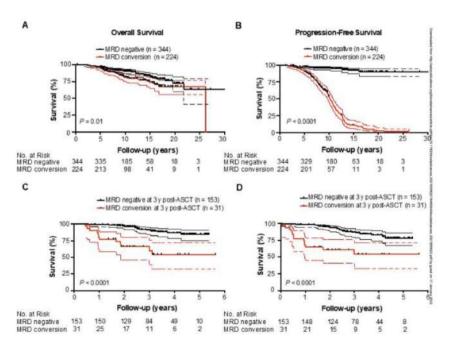
MRD Status					
Clinical End Point	MRD Negative (n = 344)	MRD conversion (n = 224)	P-value*		
No clinical relapse	330 (95.9)	61 (27.2)	<0.0001		
Relapse†	14 (4.1)	163 (72.8)	<0.0001		
Clinical relapse‡	14 (4.1)	118 (52.7)	<0.0001		
Biochemical relapse§	0 (0.0)	45 (20.1)	<0.0001		

Minimal Residual Disease (MRD) Relapse Patterns

NOTE. Data are no. (%) unless otherwise noted.

* P-value determined by Fisher's exact test.

 \dagger Relapse defined using IMWG criteria, reappearance of serum or urine M-protein by immunofixation or electrophoresis, development of > 5% plasma cells in the bone marrow or appearance of any other sign of progression (i.e., new plasmacytoma, lytic bone lesion, or hypercalcaemia)¹⁴


‡ Clinical relapse defined as relapse with any one of the following more than 30% BM involvement, presence of focal lesion on imaging (PET-CT, MRI DWIBS), presence CRAB criteria, presence of high-risk gene expression profile (GEP) signature at relapse or abnormal metaphase cytogenetics due to multiple myeloma.

§ Biochemical relapse defined as relapse with any one of the following a rising M-protein or free light chains, less than 30% BM involvement, focal lesion on imaging (PET-CT, MRI DWIBS), no CRAB criteria, no high-risk gene expression profile (GEP) signature at relapse, no abnormal metaphase cytogenetics due to MM.

1-2 Febbraio 2022 Bologna Royal Hotel Carlton

blood advances

Clinical implications of loss of bone marrow minimal residual disease negativity in multiple myeloma

- A) Overall survival of patients with MRD conversion is worse compared to patients with sustained MRD negativity (Hazard Ratio, 1.7; 95% Confidence Interval (CI), 1.1-1.7, P = 0.01).
- B) Progression free survival of patients with MRD conversion versus patients with sustained MRD negativity is significantly inferior (Hazard Ratio, 18.9; 95% CI, 13.2-27.0, P < 0.0001). In a landmark analysis at 3 years post-ASCT,
- C) Overall survival was significantly worse for patients that converted from MRD negative to positive compared to patients with sustained MRD negativity (Hazard Ratio, 20.0; 95% CI, 6.3-63.0, P < 0.0001).</p>
- D) Progression free survival of patients with MRD conversion is significantly worse than patients with sustained MRD negativity (Hazard Ratio, 4.5; 95% CI, 4.3-33.7, P < 0.0001).</p>

1-2 Febbraio 2022 Bologna Royal Hotel Carlton

OAB-058

Predictive relevance of sustained MRD negativity and of early loss of MRD negativity during maintenance therapy after transplant in newly diagnosed Multiple Myeloma patients

Angelo Belotti¹, Rossella Ribolla², Marco Chiarini³, viviana Giustini⁴, Claudia Crippa⁵, Valeria Cancelli⁶, Samantha Ferrari⁷, Annalisa Peli⁸, Chiara Bottelli⁹, Chiara Cattaneo¹⁰, Aldo Roccaro¹¹, Giuseppe Rossi¹², Alessandra Tucci¹³

- The worst PFS (24.7 months) was observed in pts with early loss of MRD negativity (< 1 year) and was significantly inferior if compared both to pts with sustained MRD negativity (p < 0.0001, HR 0.06; 0.01-0.54) and to MRD positive pts before maintenance (p 0.03, HR 0.35; 0.11-0.16), with significantly different outcome of the three subgroups (p < 0.0001)
- The worst OS observed in pts with early loss of MRD negativity (< 1 year) was significantly inferior if compared both to pts with sustained MRD negativity (p < 0.0001, HR 0.05; 0.003-0.80) and to MRD positive pts before maintenance (p 0.020, HR 0.21; 0.035- 1.26).
- We confirm the predictive value of MRD assessment after ASCT and therefore the importance of achieving sustained MRD negativity regardless of different treatment strategies. Moreover, the detection of early loss of MRD negativity can help the physician to identify pts with particularly poor prognosis

1-2 Febbraio 2022 Bologna Royal Hotel Carlton

Conclusions

- Most patients with biochemical relapse will progress to clinical relapse, with a median time of approximately 5 months. However, a small fraction of patients approximately 20%—may remain in biochemical relapse without progression for several years;
- Earlier intervention is generally best for the patient: by contrast, waiting may allow the malignant clone to expand, making the MM cells more resistant to subsequent therapy;
- Patients with confirmed biochemical relapse should receive therapy, especially in case of early, aggressive relapse, rapid increase in myeloma parameters and highrisk cytogenetics. If the criteria of biochemical relapse are not met or in case of an asymptomatic, very slow increase in biochemical markers (evolving MM), close monitoring of myeloma parameters at least every 2–3 months is recommended

1-2 Febbraio 2022 Bologna Royal Hotel Carlton

Grazie per l'attenzione

